
USING QUANTUM-MECHANICAL SOLUTIONS TO CALCULATE 

THE DIFFUSION COEFFICIENTS OF METAL VAPORS IN GASES 

K. M. Aref'ev and M. A. Guseva UDC 533.15 

The diffusion of metals in inert gases is calculated on the basis of quantum- 
mechanical calculations of atomic interactions and the temperature dependence is 
refined with generalization of the experimental data. 

There have now appeared numerous works with quantum-mechanical calculations of the in- 
teraction energy of alkali-metal atoms with inert-gas atoms (for ground and excited states), 
on the basis of the variational solution of the Schr~dinger equation in the Born--Oppenheimer 
approximation of "frozen" nuclei, including both nonempirical calculations that do not employ 
any experimental parameters [1-4] and semiempirical calculations [5-9]. In the Born--Oppen- 
heimer approximation, the quasimolecule energy E(r) is determined as the sum of the energy 
of electron motion in the field of the nucleus and the other electrons and the energy of nu- 
clear repulsion. The potential energy of atomic interactions, which may be used in calcula- 
tions of the transfer coefficients, is determined by the expression 

( 0  = E (r) - -  E ( o ~ ) ,  

where E(~) is the energy of atoms removed to infinity. 

Nonempirica! calculations are performed by the Hartree--Fock self-consistent-field method. 
The molecular orbitals are determined by the linear combination of atomic orbitals with basis 
functions of Slater or Gaussian types (the final results are practically the same for both 
types of basis function). The computational scheme is based on the use of the Rutaan system 
of equations, taking into account that the external electron shell of the alkali metal is 
open (includes one valence electron). In [2], for the pairs of atoms H--He and Li--He, account 
is also taken of the configurational interaction (leading to large distances between the 
nuclei for dispersional interaction); however, no calculations are performed for short dis- 
tances. The calculations of [I] for the pairs of atoms Li--He and Na--He were performed with- 
out taking account of configurational interaction, i.e., only the Coulomb interaction of 
electrons (and nuclei) and the electron exchange interaction were taken into account. The 
exchange interaction (in this case, repulsive) is a consequence of the Pauli principle of 
antisymmetry of the electron wave function. It predominates at moderate distances between 
the atoms (nuclei), corresponding to values of around i0-~-i0 -a at. unitsfor ~(r) (approxi- 
mately 300-3000~ in temperature units), in contrast to the case of large distances, when 
dispersional repulsion plays the basic role. 

Complete calculation for the atomic pair Na--Ar was performed in [3], both for large and 
for moderate and small distances between nuclei, taking account of Coulomb, exchange, and 
configurational interactions (Fig. I). The contribution of the latter is quite large here, 
even at small and moderate distances. Conversely, the contribution of configurational inter- 
action for the same distances in the interaction of Li or Na atoms with He atoms is small, 
since the polarizability of helium is almost an order of magnitude less than that of argon. 

Approximate calculations taking account of the interaction of outer-shell electrons and 
the atomic core separately were performed in [4] for the atomic pairs Na--Ar and Na--Xe (tak- 
ing account of the configurational interaction). For the atomic pair Na--Ar, ~(r) values ob- 
tained in [4] are larger by a factor of approximately 1.3 than those in [3]. 

In semiempirical quantum-mechanical calculations of the atomic interaction performed by 
the variational methods, particular simplifications are introduced in the Hamiltonian of the 
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Fig. i. Potential energy of the interaction of sodium and argon 
atoms: i) ~ (r) according to the calculations of [3], without taking 
account of the configurational interaction; 2) the same taking ac- 
count of the configurational interaction; 3) attractive energy (the 
difference in the theoretical energies [3] taking account and not 
taking account of the configurational attraction); 4) dispers~onal 

_Na--Ar Na--Ar ~Na--Ar _6 
attractive energy C6 r-6 (C6 = 190 [18]); thesame, u6 r + 
Na--Ar s (c~a--Ar 

Cs r- = 1.27.104 [18]; the points correspond to calculation 
of ~exch when p = 3.1, L = -1.6. Here and in the other figures, 
all the quantities are expressed in atomic units (at. units). 

Schr~dinger equation. In [5], the Hamiltonian was written as the sum of the Hamiltonian of 
the valence electron of the unperturbed alkali-metal atom and the potential energy of the 
interaction of this electron and the atomic core of the metal with the inert-gas atom. In 
the expression for this energy, account was taken of the electrostatic interaction of the 
electron with the inert-gas atom (which is transformed to dispersional attraction at large 
distances) and the interaction of the electron shells of the given core and atom. The lat- 
ter was taken into account using a pseudopotential of Gombash type, based on the Thomas--Fermi 
model of the electron shells and satisfying the Pauli principle. A free parameter selected 
from the coincidence of the theoretical depth of the potential well (for the ground state) 
and the experimental value from the data of [i0] on scattering of a metallic atomic beam in 
an inert gas was introduced in the calculation. Improvement of this method in [6] by in- 
creasing the number of states taken into account in the atomic basis led to improvement in 
the results. 

There are now a number of semiempirical calculations for the atoms Li--He, LiNe, Na--He, 
and Na--Ne based on using a model potential which takes account of the experimental data on 
electron scattering at inert-gas atoms and alkali-metal ions in the Hamiltonian [7-9]. The 
electrostatic interaction is also taken into account. 

It is of interest to calculate the diffusion coefficients of alkali-metal vapors (prac- 
tically monoatomic vapors) in inert gases on the basis of the given quantum-mechanical cal- 
culations (nonempirical and semiempirical) and to compare the results with experimental data 
encompassed by the generalization formulas [i]. Such calculations are performed using a 
formula based on Enskog--Chapman kinetic theory [12] (in the first approximation of the solu- 
tion of the Boltzmann equations and the first approximation of calculations in expansions 
with respect to the Sonine polynomial) 

PD~ = 0,0266 V T  a (M1 + M2)/2MxM2/QI~" '), (1 )  

where PDI2 is expressed in N/see (DIa in ml/sec), and Q!~,I) in 12 . 

The theoretical potential-energy curve of the interaction of metal and gas atoms in the 
ground statefor a particular ease is approximated by the dependence 

(r) = B exp ( ' r / p ) ,  (2 )  

where B and p are constants. The use of Eq. (2) taking no account of the potential well in 
the dependence ~(r) is permissible since the depth of the potential wells is small in com- 
parision with the temperature level in the calculations. For the given potentialfunction, 
according to [13] 

Q~'i ') = 4 ~ p 2 I ( 1 ,  1), 

where I(i, i) is the collision integral, tabulated in [13] as a function of ~ = in(B/kT). 
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TABLE I. Values of PD~2 and n Calculated from the Theoreti- 
cal Potential for Mixtures of Alkali-Metal Vapors with Inert 
Gases (d, ratio of theoretical value of PDI= and the result 
of generalization) 

Mixture  Tre f , K p D I ~  , N . S e C - I  d n ~gen 

Na - -  Ar [3] 
Na - -  Ar !3] 
Na - -  Ar I4] 
Na - -  Ar [61 
N a - - H e  [1] 
Na - -  He [6l 
Na - -  Ne [7] 
Na - -  Xe [4] 
Li - -  He [11 
Li - -  He [6] 
Li -- Ne [7] 
Li - -  Ar [6] 
L i -  Kr [6] 
Li - -  Xe [6] 
Cs - -  He 

Cs - -  Kr [61 
Cs - -  Xe [61 

863 
863 
863 
863 
863 
863 
863 
863 

1210 
1210 
1210 
1210 
1210 
1210 
707 
707 
707 
707 

11,4 
14,8 
13,5 
12,9 

3 3 , 3  
32,4 
17,9 
9 ,9  

88,3 
84,2 
49, l 
39,8 
37,4 
36, I 
20,8 

5 ,5  
4 , 1  
3 ,3  

0,80 
1,04 
0,95 
0,90 
0,93 
0,90 
0,92 
0,88 
1,13 
1,07 
0,93 
0,95 
0,96 
0,99 
1,12 
0,90 
0,87 
0 ,81  

1,90 
1,81 
1,85 
l ,  76 
1,96 
1,78 
1,89 
1,75 
1,99 
1,92 
1,90 
1,86 
1,87 
1,84 
1,73 
I, 70 
1,69 
1,67 

1,67 
1,67 
1,67 
1,67 
1,67 
1,67 
1,67 
1,67 
1,67 
1,67 
1,67 
1,67 
1,67 
1,67 
1,65 
1,65 
1,65 
1,65 

Some results of the calculations are shown in Table i. The values of PDt2 for mixtures 
of a particular metal with gases correspond to the reference temperature Tre f = 0.75Tb, where 
T b is the boiling point of the metal at atmospheric pressure (K). The quantity Tre f corres- 
ponds approximately to the mean temperature of the experiments to determine the diffusion co- 
efficient which provided the reference values in the generalization [ii]. These experiments 
are performed in the temperature range 0.6-0.9Tb, approximately. Table i also gives the 
values of PD~2 found for the given generalization, i.e., calculated from Eq. (I) with Q~.I) 
determined from the formula of [ii] as a function of the ionization energy of the metal I~ 
and the gas I2 and the polarizability of the gas ~=. 

It is evident from Table 1 that, for Na--Ar mixtures, the theoretical value of PD12 (row 
l) calculated using the potential curve of [3] taking no account of the configurational in- 
teraction (Fig. i, curve i) is markedly lower than that found using the generalization. How- 
ever, if the potential curve of [3] that takes account of the configurational interaction is 
used (Fig. I, curve 2), the agreement between the values of PDI= (second row) is better. Ap- 
proximately the same level of agreement is found for the generalization and the value of 
PD~2 for the given mixture (and with larger deviations for the mixture Na--Xe) found using the 
potential energy value calculated in [4], taking account of configurational interaction. 
The values of PD12 calculated for Li--He, Na-~e using the potential curves of [I] do not dif- 
fer very much from the generalization, although in these calculations, as noted, no account 
was taken of the configurational interaction. Satisfactory agreement with the generalization 
is also found for the values of PD~ for Li--He, Li Ne, Na--He, Na--Ne calculated using the val- 
ues of the potential-energy of the interaction found in semiempirical calculations [7]. The 
potential curve of [8] for Na--He is practically the same as that of [i]. Hence the theoreti- 
cal values of PD12 will also be the same. The data of [9] for Na--He cannot be used in dif- 
fusion calculations, since in [9] no values of the interaction energies were given for moder- 
ate internuclear distances. (The electrostatic interaction corresponding essentially to the 
configurational interaction is taken into account in all semiempirical calculations, as is 
clear from the foregoing.) Using the potential energy of atomic interaction obtained by 
semiempirical calculation in [6] to calculate the diffusion coefficients also leads to values 
of PD~2 that agree with the generalization in a number of cases (Table i). However, the 
discrepancy may be more considerable (20% or more, for example, for mixtures of K vapor with 
gases)~ especially for mixtures with heavy inert gases. For mixtures with neon, the dis- 
crepancy is very large (up to 38%). It may be assumed that this is associated with inac- 
curacy of the calculation of [6] for the given case. As already noted, calculations using 
the interaction energy calculated by another semiempirical method [7] lead to satisfactory 
values of PD,= for mixtures with neon. 

Overall, the agreement between the values of PD~2 at the reference temperature found 
using the results of quantum-mechanical calculations and from the generalization of [ii] is 
completely satisfactory. Table i also gives values of the exponent n in the temperature de- 
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Fig. 2. Potential energy of the inter- 
action of lithium and heli~ atoms and 
of sodium and helium atoms: I) ~ (r) 
from the calculations of [I] for Li~e; 
2) ~ (r) from the calculations of [I] 
for Na~e; the points correspond to 
calculation of ~exch at 0 = 0, L = 1.2. 
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Fig. 3. Potential energy of Hg--He (a) and He--Ar (b) interaction: 
a) calculation of ~ .... ~(r) with 0 = 0, L = 1.2 (i); ~(r) = ~exch 

c H g M t e r - 6  , ~ , ~ , ~ .  , .  (r) -- , ~z); ~tr) = ~exchtr~ --~Ht~-He(r) with~an~-qle de- 
fined in Eq. (9) (3); b) calculation of ~ev~h(r) with 0 = 3.1, 

r - C ~ r  - 6  . . . . .  L = -1.6 (i); ~(r) = ~exch( ) ~ r (3); ~(r) = ~exch(r) -- 
~H~t--Ar(r) with ~Ha~--Ar(r ) defined in Eq. (9); the points corres- 
pond to the repulsive energy from the data of [23] on the scat- 
tering of a Hg atomic beam. 

pendence PD~2 ~ T n found from the given theoretical calculations in the temperature range 
300-2000~ (n varies weakly with temperature variation -- within limits of one or two hun- 
dredths), aswell as values of the temperature exponent ng en derived from the generalization 
formula [Ii]. It is evident that the theoretical values of n are markedly higher than ng en. 
This is because, as noted earlier, the reference experiments for the generalization were 
performed in a relatively narrow temperature range, and the value of the temperature exponent 
cannot be sufficiently accurately determined (especially because of the large spread in ex- 
perimental values of PD~=, amounting to • The theoretical values of n may be re- 
garded as reliable for a considerably broader temperature range; in using these values of n, 
the deviation of PDt2 within the experimental limits of temperature variation is consider- 
ably less than the experimental error. Thus, for mixtures of alkali-metal vapors with inert 
gases, it is reasonable to introduce the following correction in the temperature exponent ngen: 

n = n g e n +  A, ( 3 )  

where A~ 0.15-0.2. The results of the generalization may be written in the following form 
here 

P D ~  ---- C (T/Tre  f )n. (4) 
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The coefficient C is defined as the value of PD~2 according to the formula of [ii] at the 
temperature Tre f (the value of ng en is retained in calculations of C). 

In addition to methods of calculating the atomic interaction on the basis of solving 
the complete Schrodinger equation, an asymptotic method has been developed, using the ap- 
ropriately simplified Schr~dinger equation for large interatomic distances [14-17]. For the 
model of a zero-radius potential, the exchange repulsive energy between alkali-metal atoms 
(with a low ~onization potential) and a helium atom is expressed by the asymptotic formula 
(atomic units are used) 

%xch (r) = 2nL(I) 2 (r)/(1 - -  ~'L), (5) 

where 8' = (82 -- 2/r)I/2; L is the electron scattering length at the helium atom. As 8' § 
0, the well-known Fermi formula is obtained from Eq. (5). 

For a more general model in which the finite radius of the spherical integration sur- 
face surrounding the perturbing atom with a high potential energy is introduced, the follow- 
ing expression may be written 

~exch(r) = 2n ( i  i P) ~2 (r)(~, 9 @ 1) exp (~'p) 
1 - -  ~'L " ( 6 )  

Equation (5) corresponds to the case when 0 ~ 0. 

The asymptotic wave function of the valence s electron of the metal is determined by 
the expression [14] 

I 
__ _| 

(r) = A r  ~ exp (--~r)/ | /4-~.  (7) 

The value of the coefficient ensuring matching with the Hartree--Fock solution at small r was 
given for various atoms in [14, 18] (with an accuracy of • 

Various values for the electron scattering length at a helium atom are given in the 
literature: from 1.14 at. units [19] to I044 at. units [15]. According to the data of [20], 
L = 1.28 at. units for helium. Below, a mean value L = 1.2 at. units is used. 

Calculating qexch from Eqs. (5) and (7) for Li--He (for lithium, 8 = 0.63 at. units, 
A = 0.82 at. units, 8' = 0 when r = 5.04 at. units) leads to satisfactory agreement with the 
results of nonempirical calculations [i] (Fig. 2) at distances larger than 6-8 at. units, 
i.e., energies less than i0-3-i0 -~ at. units. The same agreement is obtained in analogous 
calculations for Na-He. The use of Eqs. (5) and (7) to determine the exchange-repulsion 
energy of atoms of two-electron metals with helium atoms -- for example, mercury, cadmium, 
zinc atoms -- is of particular interest. For such calculations, an additional factor ~ must 
be introduced in Eq. (5), taking account of the difference in spin states of the atoms and 
the atom and the atomic core (with removal of a single electron) from the corresponding spin 
states of the alkali-metal atoms and its atomic core. The corresponding calculations by the 
genealogical scheme of Racah [14, 21] using the formulas for Wigner 9j symbols [22], the 
Clebsc~-Gordan coefficients, and the genealogical coefficients give ~ = 2 for the interaction 
of two-electron metals (with valence s electrons) with helium or other inert gases. 

The results of calculating ~exch from Eqs. (5) and (7) with the factor m = 2 for Hg--He 
(for mercury 8 = 0.876 at. units, A = 1.8 at. units, 8' = 0 when r = 2.6 at. units) at dis- 
tances of more than 4 at. units or energies less than i0-= at. units are shown in Fig. 3, 
together with points corresponding to the repulsive energy (inversely proportional to r TM) 
obtained in [23] from an analysis of experimental data on the scattering of Hg atomic beams 
in helium. The coincidence with the theoretical curve of ~exch is good. 

Another curve in Fig. 3 shows the interaction energy of mercury and helium atoms, tak- 
ing account of the dispersional attraction 

(r) = ~o6M (r) -- C~g-H~ r-~, (8) 

where the Van der Waals constant C~ g-'He = 14 at. units [18]. However, at moderate and short 
distances, the dispersional attraction is considerably weakened [24, 25]. The reduction in 
attractive energy (the energy differences calculated when the confi~urational interaction is 
disregarded and taken into account) in comparison with the energy c~a-Arr -6 for Ne Ar inter- 
action [3] is evident from Fig. i. In a rough calculation, the curve of the attractive 
energy~G(r) of atoms of particular metals and gases may be plotted using the approximmte 
conversion relation 
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TABLE 2. Values of PD~2 and n Calculated from Asymptotic 
Theory for Mixtures of Two-Electron Metals with Helium and Argon 

Mixture Tre f , K Pol~, d, ~ ngCn 
N.~c-! 

Hg--He 470 13,1 0,94 1,77 1,75 
(14,1) 1,2 1,79 
/13,0t 0,94 1,77 

Cd--He 780 {29,01. 1,21 1,81 1,75 
Zn--He 890 {38,3} 1,04 1,81 1,75 
Hg--Ar 470 3,5 1,16 1,73 !,75 
Hg--Ne 470 6,1 0,72 __ ! ,74 1,75 
Note. Figures without paremheses correspond to ~p(r) defined from E~ (I~,  those 
wi~ parentheses to ~(r) from Eq. (8), and those with cmly brackets to ~(r) = 
~exch(r); d 1 is the ratio of ~eore~cal and experimental values ~ PDlm 

~at (r) = ~at (r)C6 (9) 

where the subscript M-G denotes the corresponding metal and inert gas (like the superscript 
Na--Ar; for this pair of atoms, C~ a--Ar = 190 at. units [18]). Then 

M-G 
(r) = % x e ~ r ) - -  ~at (r). (10)  

Fo r  Hg--He, t h e  c u r v e  o f  ~ ( r )  p l o t t e d  u s i n g  Eq. (10)  i s  a l s o  known i n  F i g .  3a .  C a l c u l a -  
t i o n  by  Eq. (8)  o r  (10)  f o r  l a r g e  d i s t a n c e s  shows t h a t  t h e  d e p t h  o f  t h e  a t t r a c t i v e  p o t e n t i a l  
w e l l  i s  v e r y  s m a l l  f o r  Hg--He ( l e s s  t h a n  10~  Henc~  t h e  a p p r o x i m a t i o n  i n  Eq. (2)  may a l s o  
be used in calculating the diffusion coefficient in this case. 

The results of calculating PDx2 for Hg--He for the reference temperature Tre f are shown 
in Table 2, together with the values of the exponent n for the temperature range 300-2000~ 
Calculations are performed with ~(r) defined by Eq. (i0) and by Eq. (8), and also under the 
assumption ~(r) = ~exch(r). The difference in the values of PD:2 is not very large. The 
theoretical values of PDx2 are compared with the mean experimental values, which are below 
those calculated from the generalization by a factor of 1.08 (therefore, the comparison with 
experimental data is more revealing; remember that the accuracy of the generalization is 
around • The agreement is found to be satisfactory. Table 2 also gives values of n gen, 
which do not differ greatly from n, i.e., it is unnecessary to introduce corrections of the 
type of Eq. (3). 

As well as theoretical results for Hg--He, Table 2 gives analogous results for the mix- 
tures Zn-He and Cd--He (for Zn, B = 0.831 at. units, A = 1.69 at. units; for Cd, ~ = 0.813 at. 
units, A = 1.6 at. units). Values of the constant C~ for the given pairs of atoms are not 
given in the literature. Therefore, calculations are performed only under the assumption 
that ~(r) = ~exch(r). There is sufficient agreement between the theoretical and experimental 
values of PDx2 [26, 27]. In the case of Cd--He, the agreement improves as the asymptotic co- 
efficient A increases. If, for example, A = 1.8 at. units is taken, the ratio of the theoret- 
ical and experimental values of PDx~ decreases to 1.15. 

In [27], values of PDx2 were determined on a specially developed high-temperature ap- 
paratus (by the Stefan method) both for Cd--He mixtures and for mixtures with argon and molec- 
ular nitrogen in the temperature range 670-970~ Recently, on the same apparatus, there 
have been measurements of PDt2 for Mg--He mixtures in the temperature range 770-I170~ also 
corresponding to the generalization of [ii]. 

Note also that satisfactory agreement between the theoretical and experimental values 
of PDx2 for Hg--Ar and Hg--Ne may be obtained if Eq. (6) with a finite 0 is used for ~exch. 
The electron scattering length at the argon atom is L = -1.6 at. units [19]. Taking 0 = 3.1 
at. units, the value of ~exch calculated from Eq. (6) corresponds both to the value obtained 
in [3] (disregarding configurational interaction) for Na--Ar (Fig. i) and the value of the 
repulsive energy of Hg--Ar obtained from the data on the scattering of a Hg atomic beam in 
argon [23] (Fig. 3b). When using Eq. (I0) for ~(r) in calculating PDx2, the value in Table 2 
is obtained for Hg--Ar. It does not differ greatly from the experimental value [ii]. The 
agreement of the results calculated for PDx= and those found from the generalization of [II] 
for Hg--Ne is somewhat worse (there are no experimental data for this mixture) if p = i.i at. 
units is assumed in the analogous calculations together with L = 0.2 at. units according to 
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[19]. Calculations using data in the scattering of Hg atoms in Ne lead to a still lower 
value of PDI2. The values of p for helium, neon, and argon assumed in the calculations de- 
pend linearly on the ionization energy of the gas. 

There also exist data on the repulsive energy for Hg--Kr and Hg--Xe [23]. However, calcu- 
lation of ~exch for these mixtures involves introducing excessively large values of p, com- 
parable with the internuclear distances, since the heavy inert gas is characterized by large 
negative values of the electron scattering length (for krypton, L = -3.2 at. units; for 
xenon, L = -5.8 at. units [19]). Evidently, other calculation methods are needed for such cases. 

NOTATION 

~(r), potential energy of atomic interaction, depending on the distance between the 
nuclei r, at. units; P, total pressure in the binary gas mixture, Pa; D,2, mutual-diffusion 
coefficients of the components in the binary gas mixture, m2/sec; T, absolute temperature, 
~ M: and M2, atomic masses of the components, kg/kmole; Q12(I, I), mean diffusional cross 
section, ~2; ~exch, potential energy of the exchange interaction of the metal atom and the 
gas atom, at. units; B = 2/~I, II, ionization energy (single ionization) of the metal atom, 
at. units; L, electron scattering length at an inert-gas atom, at. units; I(r), asymptotic 
wave function of the valence electron of the unperturbed metal atom,; A, asymptotic coef- 
ficient, at. units; at, polarizability of the inert gas, at. units. 
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DETERMINATION OF COEFFICIENT OF THERMAL EXPANSION 

FOR BINARY COMPOSITE MATERIALS 

V. V~ Novikov UDC 539.32 

The coefficient of thermal expansion is determined for two-phase materials on the 
basis of the percolation model. 

I. Structural Model of Nonhomogeneous Material. The analysis of heat conduction and 
electrical conduction in binary heterogeneous materials with random distribution of equipol- 
lent components is usually based on the percolation theory (theory of flow-through) [i, 2]. 
One of the main applications of this theory is determining the topology of an infinite clus- 
ter or, in other words, the distribution of components in such material as their volume con- 
centration changes. It has been established [I, 2] that as the volume concentration v~ of 
the first component in a continuous binder changes over the 0 <~_v~ ~v e range (v c is 
the percolation threshold), there appear isolated inclusions (insular clusters) of the first 
component and with v c ~ vl bonds develop between them which transforms these insular clusters into 
infinite ones, this jumpwise transition occurring at the concentration v: = v c and being 
followed by formation of two equipollent infinite clusters when v: ~v2 ~0.5 in the material. 
A further increase of the volume concentration of the first component v~ > 0.5 results in a 
structural reversal, namely an infinite cluster of the second component will decrease and at 
the concentration v= = v c be jumpwise transformed into an insular one while an infinite clus- 
ter of the first component continues growing. 

Using the concepts of the percolation theory and the methods of reduction to an elemen- 
tary cell, a structural model of a heterogeneous material has been proposed [3, 4], an ele- 
mentary cell of which is shown here in Fig. I. The geometrical parameters of such an elemen- 
tary cell are given in Table i~ On the basis of this model theoretical relations for the 
effective thermal and electrical conductivities which agree closely with experimental data 
[3, 4] have then been derived. 

Now, using this percolation model, we will determine the coefficient of thermal expan- 

sion for a heterogeneous material. 
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